

Name: 2/7/20

HansenMath[™] Algebra 2: Notes on the Parabola

A Parabola is the set of all points in a plane that are the Same distance

from a given point called the focus F and a given line called the directrix.

Example 1: Graph the parabola given by the equation, $y = \frac{1}{4}(x+2)^2 - 3$

$$Y = \frac{1}{4P}(x+2)^{2} - 3$$

 $Y = \frac{1}{4P}(x-1)^{2} + K$

directrix

- OFind vertex (h, K). V(-2, -3
- 2) Plot Focus, F 4p = 4 4p = 4 P= 1

P is Distanc From vertex to Focus, F. Since y = and p is positive, go up.

Example 2: Graph the parabola given by the equation,
$$y = -\frac{1}{8}(x+3)^2 + 5$$

Example 3: Graph the parabola given by the equation, $x = \frac{1}{2}(y-4)^2 - 2$

X= + Open Right C

Example 4: Graph the parabola given by the equation, $x = -\frac{1}{12}y^2$

$$X = - Left$$

$$Vertex: (h, k) \rightarrow (0, 0)$$

$$Origin$$

$$P = -12$$

$$P = -3$$

Example 5: Write the equation of a parabola with focus F(0, 4) and directrix y = -4

Example 6: Write the equation of a parabola with focus F(5, 5) and directrix y = 7

$$y = -\frac{1}{4}(x-5)^{2} + 6$$

 $\frac{1}{4p} = \frac{1}{4(1)} = -\frac{1}{4}$

Graph the parabola, including the vertex, focus, directrix, and axis of symmetry

1.)
$$y = -\frac{1}{4}(x+6)^2 + 4$$

2.)
$$x = \frac{1}{12}(y + 1)^2 + 1$$

Write an equation of a parabola with vertex at the origin and:

Write an equation of a parabola with vertex at the origin and:

5.) directrix
$$y = 5$$

6.) directrix
$$x = -4$$

Write an equation of a parabola with:

7.) focus
$$F(0, 2)$$
 and directrix $y = -2$