

Name: _	Key	Period: 1 - 2	<u></u>
	/1		

FINDING AREA of REGULAR POLYGONS-Let's get it on!

The UFC's cage is the shape of a <u>regular Octagon</u>. This is a figure with $\frac{8}{2}$

Sides & angles Congruent 12.5

Each side of the cage is made up of a steel fence that is 12.5' wide. Let's sketch this in. 12.5 The <u>Perimeter</u> of this Octagon would therefore be 100 Feet. 12.5 * 8

The UFC needs to order a new canvas (mat) for their Octagonal Cage! We need to know what the **AREA** is—in square feet—of this Octagon!

So, let's break this octagon into triangles, since we know how to deal with them already!

Central Angle 360° Method

360° about center ÷ 8 angles = 45° each Interior Angle Theorem Method

(n-2)* 180 $(8-2)*180 = 1080 \div 8$ = 135°

\mathbb{C}^{\times}	
	UFE
	TIMME SETTING

Name:	Period:
-------	---------

FINDING AREA of REGULAR POLYGONS-Let's get it on!

Now, let's find the **Area** of the Triangle. We got good at this last week ☺

STEP 3	
3111-1	

* we need apother, the height! Use Tangent!

6.25*tun 67.5 = x + 6

$$AREA = \frac{1}{2} * \frac{12.5}{Base} * \frac{15}{Height} = \frac{93.75 + 1^2}{93.75 + 1^2}$$

Lastly, Remember that this area of 93.75 is for just 0 Ne 7 In 9 le. However, the OCTAGON is made up of 8 of these triangles, so we have to 7

multiply by 8 to get the FINAL ANSWER of 750 Ft

Now, IT'S TIME for your assignment! Let's get it on!