

HansenMath Pre-calc: 7.8 Applications of Matrices and Determinants

Area of a Triangle

In this section, you will study some additional applications of matrices and determinants. The first involves a formula for finding the area of a triangle whose vertices are given by three points on a rectangular coordinate system.

Area of a Triangle

The area of a triangle with vertices $(x_1, y_1), (x_2, y_2)$, and (x_3, y_3) is

Area =
$$\pm \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

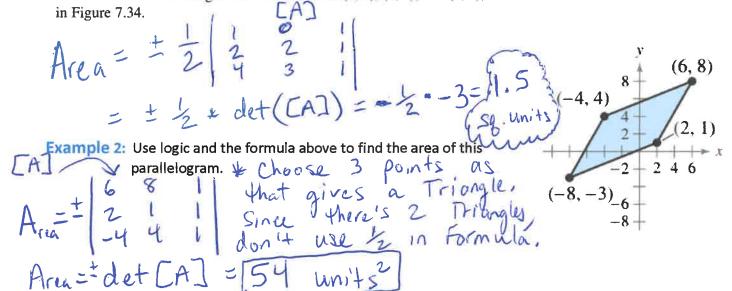

where the symbol (±) indicates that the appropriate sign should be chosen to yield a positive area.

Figure 7.34

Example 1 Finding the Area of a Triangle

Find the area of the triangle whose vertices are (1, 0), (2, 2), and (4, 3), as shown

Example 3: Suppose three given points are (0, 1) (2, 2) and (4, 3). What would the area be of the "triangle"?

3: Suppose three given points are
$$(0, 1)$$
 (2, 2) and (4, 3). What would the area be of the "triangle"?

Area = $\frac{1}{2}$ $\frac{$

Example 4: Are the given three points collinear? (-2, -2) (1, 1) and (7, 5)

[A]= |-2 -2 | | > det([A])

Cryptography

A **cryptogram** is a message written according to a secret code. (The Greek word *kryptos* means "hidden.") Matrix multiplication can be used to encode and decode messages. To begin, you need to assign a number to each letter in the alphabet (with 0 assigned to a blank space), as follows.

To encode a secret message

Real Word Matrix (1 x 3)
[A]

Encoding Matrix (3 x 3)
[B]

Secret-code Word Matrix (3 x 1)
[C]

To decipher and crack the code, it follows...

Secret-code Word Matrix (3 x 1)

[C] *

Inverse Encoding Matrix (3 x 3)

[B⁻¹] =

Decoded Real Word Matrix (1 x 3)

matrix

[A]

[Note: The above conveys the general idea, but you will use different Matrix letters to suit your needs]

Example 5: Decode the cryptogram given by: 4, -24, 83, 16, -35, 46, 40, -65, -10, 0, -6, 30

If the encoding matrix is

I set as

I 1 -2 2

I set as

I 1 -1 -4 Set: [A] = [4 - 24 83]

[B] = [16 - 35 46]

So... [A] *[E] = [20 21 5]

[B] + [E] -1 = [19 4 1]

[C] + [E] -2 = [6 6 0]

Use Chart Timesdam, OF

And that's all folks It's time for the Chapter 7 Review Study Guide!