

Name 2/11/2070

HansenMath[™] Pre-calc: 6.5 Trig form of Complex Numbers

Recall that you can represent a complex number z = a + bi as the point (a, b) in a coordinate plane (the complex plane). The horizontal axis is called the real axis and the vertical axis is called the imaginary axis.

The Hosolate Value of the complex number a + bi is defined as the distance between

the origin (0, 0) and the point (a, b).

Thus, if follows that $|a + bi| = \sqrt{a^2 + b^2}$

Example 1: Plot z = -3 + 2i and find its absolute value.

$$121 = \sqrt{(-3)^2 + (2)^2} \rightarrow \sqrt{13}$$

Just as we saw with normal vectors, it can be helpful to write complex numbers in trigonometric form.

Trigonometric Form of a Complex Number

The trigonometric form of the complex number z = a + bi is given by

$$z = r(\cos\theta + i\sin\theta)$$

where $a = r \cos \theta$, $b = r \sin \theta$, $r = \sqrt{a^2 + b^2}$, and $\tan \theta = b/a$. The number r is the modulus of z, and θ is called an argument of z.

Example 2: Write the complex number $z = -2\sqrt{3} - 2i$ in trigonometric form.

 $(=\sqrt{(-2\sqrt{3})^2+(-2)^2} \quad T4n \propto = -\frac{7}{7\sqrt{3}} \rightarrow \frac{7}{\sqrt{3}} \rightarrow \frac{7}{\sqrt{$

Example 3: Write the complex number $z = \sqrt{6}(cos(-\frac{\pi}{4}) + isin(-\frac{\pi}{4}))$ in standard form a + bi

Trigonometric form adapts nicely to multiplication and division of complex numbers:

Product and Quotient of Two Complex Numbers

Let $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$ be complex numbers.

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$$
 Product

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)], \qquad z_2 \neq 0 \qquad \text{Quotient}$$

Let's try it:
$$z_1 = -3(cos(\frac{4\pi}{3}) + isin(\frac{4\pi}{3}))$$
 $z_2 = 7(cos(\frac{\pi}{2}) + isin(\frac{\pi}{2}))$

Example 4: Find z_1z_2

Example 5: Find $\frac{z_1}{z_2}$

$$-\frac{3}{7}\left(\cos\left(\frac{4\pi}{3} - \frac{\pi}{2}\right) + i \sin\left(\frac{4\pi}{3} - \frac{\pi}{2}\right)\right)$$

$$-\frac{3}{7}\left(\cos\left(\frac{5\pi}{6}\right) + i \sin\left(\frac{5\pi}{6}\right)\right)$$

$$-\frac{3}{7}\left(-\frac{\sqrt{3}}{6}\right) + i \left(\frac{5\pi}{2}\right)$$

$$-\frac{3}{7}\left(\frac{5\pi}{6}\right) + i \left(\frac{5\pi}{2}\right)$$

$$-\frac{3}{7}\left(\frac{5\pi}{6}\right) + i \left(\frac{5\pi}{2}\right)$$

$$-\frac{3}{7}\left(\frac{5\pi}{6}\right) + i \left(\frac{5\pi}{2}\right)$$

Assignment: Page 456, #7, 8, 13, 16, 17, 31, 33, 37, 43, 45 ©