Name: An Sen

1/28/2020

#### HansenMath Pre-calc: 6.1 Law of Sines

#### **OLD SCHOOL**

Stanley is flying a kite. The kite string makes an angle of 57° with the ground. If Stanley lets out 100 feet of string, what is the height of the kite in the air?



X= 83.9 F+

But what about oblique triangles? That is, they have No Right

Right Angle

## Law of Sines

In any triangle, the ratio of a side length to the sine of its opposite angle is the same for all three sides. As a formula:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Okay great.... what does this look like in practice? Ex #1

Ex #2

Sin 105

C. Sin 35 =  $\frac{7}{5}$  Sin 105

Sin 35

A

C = 11.8

Length

4.7

5.5

But I thought Sine only works on RIGHT TRIANGLES. Say what!?

Sin B = .76 (2ND) Sin (.76) = 49.5



C. 
$$\sin B = \frac{b}{b} \cdot \sin C = \frac{b}{b} \cdot \sin C$$
fractions
$$C \cdot \sin B = \frac{b}{b} \cdot \sin C = \frac{b}{b} \cdot \sin C$$

Divide through by Sin B and Sin C

That's a quick proof, of sorts!

#### Law of Sines

Solve triangle LMN if L=29, M=112, and I=22.



$$\frac{m}{Sin 112} = \frac{22}{Sin 29}$$
 $m = 42.1$ 

# Try these:

Solve each triangle. Round to the nearest tenth.

- 1. A=40°, C=70°, a=20.
- 2. b=12, A=25°, B=35°.
- 3. B=100°, C=50°, c=30
- 4. a=8.2, B=24.8, C=61.3°

#### Using Law of Sines to find AREA

How would you find the area of this Triangle?



en = 2 · base · height

= 1 · b · C · Sin A

Thus:

### Area of a Triangle

The area of any triangle is given by one half the product of the lengths of two sides times the sine of their included angle.

$$Area = \frac{1}{2}bc\sin A$$

$$Area = \frac{1}{2}ab\sin C$$

$$Area = \frac{1}{2}ac\sin B$$

$$a = 3, b = 5, m \angle C = 40^{\circ}$$



Area = 2.5.3.5in40